Lower Bounds by Birkhoff Interpolation
نویسندگان
چکیده
In this paper we give lower bounds for the representation of real univariate polynomials as sums of powers of degree 1 polynomials. We present two families of polynomials of degree d such that the number of powers that are required in such a representation must be at least of order d. This is clearly optimal up to a constant factor. Previous lower bounds for this problem were only of order Ω( √ d), and were obtained from arguments based on Wronskian determinants and "shifted derivatives." We obtain this improvement thanks to a new lower bound method based on Birkhoff interpolation (also known as "lacunary polynomial interpolation").
منابع مشابه
Rotation Numbers and Lyapunov Stability of Elliptic Periodic Solutions
Using the relation between the Hill’s equations and the ErmakovPinney equations established by Zhang [27], we will give some interesting lower bounds of rotation numbers of Hill’s equations. Based on the Birkhoff normal forms and the Moser twist theorem, we will prove that two classes of nonlinear, scalar, time-periodic, Newtonian equations will have twist periodic solutions, one class being re...
متن کاملTopology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards
We give lower bounds on the number of periodic trajectories in strictly convex smooth billiards in Rm+1 for m ≥ 3. For plane billiards (when m = 1) such bounds were obtained by G. Birkhoff in the 1920’s. Our proof is based on topological methods of calculus of variations – equivariant Morse and LusternikSchnirelman theories. We compute the equivariant cohomology ring of the cyclic configuration...
متن کاملNon-real zeros of linear differential polynomials
Let f be a real entire function with finitely many non-real zeros, not of the form f = Ph with P a polynomial and h in the Laguerre-Pólya class. Lower bounds are given for the number of non-real zeros of f ′′ + ωf , where ω is a positive real constant.
متن کاملBIRKHOFF NORMAL FORM FOR PDEs WITH TAME MODULUS
We prove an abstract Birkhoff normal form theorem for Hamiltonian Partial Differential Equations. The theorem applies to semilinear equations with nonlinearity satisfying a property that we call of Tame Modulus. Such a property is related to the classical tame inequality by Moser. In the nonresonant case we deduce that any small amplitude solution remains very close to a torus for very long tim...
متن کاملGeodesic flow, left-handedness, and templates
We establish that, for every hyperbolic orbifold of type (2, q,∞) and for every orbifold of type (2, 3, 4g+2), the geodesic flow on the unit tangent bundle is left-handed. This implies that the link formed by every collection of periodic orbits (i) bounds a Birkhoff section for the geodesic flow, and (ii) is a fibered link. We also prove similar results for the torus with any flat metric. Besid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Complexity
دوره 39 شماره
صفحات -
تاریخ انتشار 2017